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ABSTRACT 
Algae are sensitive bioindicators that provide unique insights into freshwater biological 
condition. However, their complex species assemblages can impede the development of 
biological indices that require a comprehensive taxonomic dataset and a thorough catalog of 
species’ autoecological attributes. Intensive sampling campaigns have amassed over a decade’s 
worth of algae taxonomy records for California’s wadeable streams, providing a robust algae 
taxonomic dataset to support the creation of a statewide biological index. Out of over 2500 
algae taxonomy samples, we identified 416 reference sites and constructed a series of 
predictive models to use geographic location to set site-specific, reference-based expectations. 
We developed two separate components to the index: a measure of taxonomic completeness 
(the ratio of observed-to-expected taxa, O/E), and a multimeric index (MMI) to evaluate 
ecological structure. We developed multiple versions of each algal index, individually for 
diatoms, soft-bodied algae, and a hybrid approach using both algal assemblages. All indices 
were evaluated using either species or genus-level taxonomy data. We evaluated index 
performance across the state for precision, accuracy, responsiveness, and regional bias. Final 
index performance varied widely among all assemblages: the best performing O/E index was a 
diatom-only index, whereas all three algal assemblages yielded high-performing MMIs. 
Surprisingly, none of the best-performing MMIs incorporated modeled metrics, as predictive 
modeling did not improve metric performance. Combined O/E and MMIs did not perform 
better than MMIs alone, resulting in the selection of the MMI as the optimal indices for 
assessing biological health for California wadeable streams. Metrics in final MMIs relied on trait 
attribute data derived specifically for California taxa, highlighting the importance of a 
comprehensive trait attributes database for constructing a multi-metric index. Additionally, 
hybrid MMIs were the most sensitive to anthropogenic stressor gradients, emphasizing the 
value in combining multiple algal assemblages to gain a holistic assessment of biological 
condition. 
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INTRODUCTION 
 
Algae have been used as ecological indicators for over a century (Kolkwitz and Marsson 1908; 
Stevenson, 2014), and in recent years there has been a renewed focus on the rich history of 
algal autoecological research for the development of algae-based biological indices. Algae are 
powerful ecological indicators due to their rapid growth rate and ability to respond to 
perturbations on the scale of hours instead of weeks (), their sensitivity to nutrient and 
chemical stressors (Hering et al., 2006; Stevenson, 2014), and their diverse phylogenetic 
assemblages that enable species-specific responses to a catalog of environmental conditions 
(Meyer et al., 2007). However, these diverse species assemblages have also acted as an 
obstacle to developing algae-based biological indices: many algae species lack trait attributions, 
therefore limiting the development of trait-based biological indices.  
 
California presents a unique challenge for developing an algae-based biological index. California 
has a number of diverse ecoregions (Ode et al., 2016), ranging from temperate rainforests to 
deserts to grasslands (Omernik 1987), which can prove problematic in the journey to develop a 
universal index for all regions. Additionally, California is home to a number of endemic species 
(Erman 1996, Moyle and Randall 1996, Moyle et al. 1996; Sork et al., 2016), including algae 
(Stancheva and Sheath, 2016), with new novel species are identified annually. Novel taxa often 
lack trait attributes and known autoecological characteristics, not to mention the taxonomic 
burden to reliably identify rare or novel taxa. Luckily, California also benefits from extensive 
annual sampling campaigns in wadeable stream environments, efforts that have resulted in rich 
taxonomic and ecological datasets for both algae and benthic macroinvertebrates (BMIs). It is 
thanks to these sampling campaigns that California is now poised to develop a statewide algal 
index.  
 
One of the primary concerns for the development of all biological indices, and especially those 
that are created for diverse environments, is that the index scores provide consistent meaning 
in variable environmental settings. To accomplish this, index development must rely on a 
robust and clearly-defined definition of the “reference-condition”. The reference condition 
approach (RCA; Reynoldson et al., 1997) uses minimally-disturbed sites (“reference” sites) to 
establish biological expectations at a test site. For a statewide biological index, universal 
reference-condition screening criteria are applied for all sites, regardless of geographic setting. 
In California, previous efforts to identify reference sites for ambient monitoring and biological 
index development (Ode et al., 2016; Mazor et al., 2016) have yielded set of screening criteria 
that incorporate measures of anthropogenic disturbance at a variety of spatial scales. These 
robust screening criteria help to evaluate a biological index’s degree of regional bias, or its 
ability to assess ecological condition without influence from natural environmental gradients.  
 
Once equipped with a robust definition of the reference condition, there are multiple options 
for developing a biological index. A predictive modeling approach to index development allows 
for an opportunity to account for natural variability in biological communities by setting site-
specific, reference-based expectations (Hawkins et al., 2010; Mazor et al., 2016). Pioneered by 
the River Invertebrate Prediction and Classification System (RIVPACS; Wright et al., 2000), 
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biological indices that follow this approach grade test sites as a deviation from reference-site 
expectations, often reported as a ratio of observed versus expected taxa (O/E) (Moss et al. 
1987, Hawkins et al. 2000, Wright et al. 2000; Ode et al., 2008). Recently, studies have also 
focused on developing predictive multi-metric indices (MMIs) that rely on autoecological traits 
of biological communities instead of only species identity (Cao et al. 2007, Pont et al. 2009, 
Vander Laan and Hawkins 2014). In California, the use of this predictive modeling approach has 
been successful for the development of a BMI biological index. The California Stream Condition 
Index (CSCI) paired both a predictive O/E and a predictive MMI to derive a two-component 
index (Mazor et al., 2016). This study relied on hundreds of “minimally disturbed” reference 
sites (Ode et al., 2016b) to develop robust, predictive models that account for geographic 
setting in assessing biological condition.  
 
Efforts to develop predictive algal indices have had varying success. Cao et al. (2007) 
successfully developed both an O/E and MMI for diatoms of Idaho streams. Feio et al., (2009) 
saw comparable performance between a predictive diatom index and non-predictive multi-
metric indices, which was improved upon in Feio et al. (2014) to develop AQUAFLORA for 
Portuguese streams. Mazor et al. (2006) successfully developed a RIVPACS index for periphyton 
communities in the Fraser River. Other attempts at a predictive diatom index have met with 
less success, credited to greater temporal variability in diatom communities than BMI 
communities and high variability in reference site scores (Chessman et al., 1999). A predictive, 
diatom-only index has already been attempted for the Central Coast of California, but the 
predictive O/E index suffered from low precision and accuracy (Ritz et al., 2010).  
 
The algal indices generated as part of this study build upon the previous regionally-specific algal 
indices that were developed for this region: an index of biotic integrity (IBI) for the Eastern 
Sierra Nevada region (Blinn and Herbst, 2003) designed using both diatoms and soft-bodied 
algae, and the Southern California Index of Biotic Integrity (SoCal IBI; Fetscher et al., 2014) that 
relied on a series of non-predictive, multi-metric indices calculated using diatoms alone, soft-
bodied algae alone, or a hybrid of both assemblages. Additionally, we developed both a 
measure of taxonomic completeness (i.e., an O/E index) and a measure of ecological condition 
(i.e., an MMI) after the CSCI (Mazor et al., 2016). We tested each component of the algal index 
using diatoms alone, soft-bodied algae alone, or a hybrid using both assemblages after the algal 
IBI (Fetscher et al., 2014). We evaluated the performance of each permutation of the algal 
index across both environmental and disturbance gradients, with a concerted focus on selecting 
final indices with high precision and accuracy and low regional bias. Herein we provide the 
performance criteria for the various permutations of the algal indices to inform management 
decisions and condition assessment statewide.  
 
METHODS  
 
Study region: California is a species-rich biogeographic region that offers a complex history of 
geological change and complex modern-day geographic settings and climate fluctuations 
(Calsbeek et al., 2003; Sork et al., 2016). Across California’s 424,000 km2, there are not only 
broad variations in climate, elevation, and geology, but also land-use, urban and agricultural 
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development (Sleeter et al., 2011). For evaluating ecoregion responses, we divided the state 
into 6 ecoregions (North Coast, Central Valley, Chaparral, Sierra Nevada, and South Coast) 
based on modified ecoregional (Omernik 1987) and hydrological boundaries (Ode et al., 2016).  
 
Data compilation: We compiled algae taxonomic data from multiple federal, state, and regional 
monitoring programs in California, resulting in a dataset of 1943 sampling sites and 2588 
unique sampling events in wadeable streams. All sampling events followed a standardized 
periphyton sampling protocol (Ode et al., 2016a). Briefly, a reach of 150 m was subdivided into 
eleven transects. A “multihabitat method” was employed to objectively collect subsamples of 
algal specimens quantitatively from a known surface area over a representative sample of 
stream substrata (Fetscher et al., 2009). Additionally, this quantitative fraction may be 
supplemented by a live, “qualitative” fraction that was used to help identify SBA species with 
reproductive structures. Algae samples were composited and proportioned into diatom and 
soft-bodied algae aliquots for laboratory analysis (Stancheva et al., 2015). Sampling events in 
close proximity (within 300m) were treated as repeat samples from a single site. For sites with 
multiple years of sampling, we focused on the most recent sample for index development and 
used previous sampling events for performance analyses (e.g. standard deviation of index 
scores within a single sampling site).  

Data curation: Samples with fewer than 300 diatom valves were excluded from diatom and 
hybrid analyses. Due to the uneven inclusion of the qualitative fraction for soft-bodied algae 
taxonomy samples, only quantitative taxonomy data was included. All taxonomy results were 
converted from count (diatoms) or biovolume (soft bodied algae) data to presence/absence 
data in anticipation of future assemblage data being derived from DNA-based methods. All 
unpublished species names were subjected to a name-harmonization with AlgaeBase 
(algaebase.org) and Biodata taxa names (http://aquatic.biodata.usgs.gov) to remove 
ambiguous identifiers; harmonized name lists are provided at github.com/sccwrp.  

Environmental variables: We assembled environmental data from multiple sources, including 
GIS-derived variables from the National Hydrography Dataset Plus (NHD, http://www.horizon-
systems.com/nhdplus), the National Landcover Data Set (http://www.epa.gov/mrlc/nlcd -
2006.html), the National Inventory of Dams (http://geo.usace.army.mil), Mineral Resource Data 
System (http://tin.er.usgs.gov/mrds), and predicted specific conductance from Olson and 
Hawkins (2012). These data included measures of climate, elevation, geology, land cover, land 
use, road density, hydrologic alteration and mining activities (Table 2). We used environmental 
variables that characterize immutable natural gradients as candidate predictors for the O/E and 
MMI models, whereas environmental variables influenced by anthropogenic factors were used 
for screening reference sites and for assessing index performance along stressor gradients 
(Mazor et al., 2016; Ode et al., 2016b).  

Classifying sampling sites into disturbance classes: We assessed the influence of 
anthropogenic activity using measures of surrounding land use as well as local habitat data 
after Ode et al. (2016b). We followed a “least disturbed” reference concept after Stoddard et 
al., 2006 for the identification of “reference” sites, and identified high-activity sites after Mazor 
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et al., 2016 (Table 1). We used reference sites for calibrating our O/E and MMIs and for 
determining the biological composition of sites with minimal human disturbance (Hawkins et 
al., 2010; Mazor et al., 2016). Reference site screening thresholds closely followed those used in 
the construction of the CSCI (Mazor et al., 2016; Ode et al., 2016b), with the exception that 
conductivity was not used to eliminate a site from the reference pool (Table 1). Stressed, or 
high-activity sites, were used in scoring MMIs as well as in evaluating performance of both O/E 
and MMIs (see below). Any sites that did not pass the reference or stressed screening 
thresholds were included in the “intermediate” site pool. We further divided each dataset into 
a calibration (80%) and validation (20%) subset and stratified assignment by subregion for equal 
representation of different environmental settings.  
 
O/E index construction: The O/E index is a measure of taxonomic completeness that quantifies 
the loss of expected native taxa with increasing exposure to environmental perturbation and 
stressors (Hawkins, 2006). The expected number of taxa (E) is derived from the environmental 
setting of the sampling site, whereas the observed number of taxa (O) represents the 
proportion of expected taxa observed. First, we clustered reference calibration sites based on 
their presence-absence taxonomic composition. Second, we developed a random-forest model 
(Cutler et al., 2007) to predict membership within a taxonomic cluster using select 
environmental variables that are minimally affected by human perturbation (Table 2). We then 
used this random-forest model to predict cluster membership of test sites based on their 
environmental setting. The capture probability (Pc), or probability of observing a taxon at a test 
site, was calculated as the cluster-membership probability-weighted frequencies of occurrence 
summed across all clusters (Mazor et al., 2016). The sum of the capture probabilities is the 
expected number of taxa (E) in a sample from a site.  

We performed the clustering of reference site algae populations using a presence/absence 
transformed data matrix and excluded all taxa occurring in < 2.5% and >95% of reference 
calibration sites (Hawkins et al., 2000). For each of the O/E indices, we determined an optimal 
number of clusters through a computational permutation (clusters ranging from 3-15, capture 
probability of 0.4 or 0.5) and iterated the cluster numbers and minimum capture probabilities 
with k-means clustering using the k-means function in the stats R package (R Core Team, 2013). 
The iteration with the best performing O/E index was selected as the final cluster number for 
that assemblage. The rare species excluded in the clustering step were retained for subsequent 
steps in the O/E development.  

To select environmental variables for use in a model to predict cluster group membership, we 
used recursive feature elimination (RFE) as implemented in the caret package in R (Wing et al., 
2017). In brief, we used RFE to identify the optimal number of environmental predictor 
variables whose model accuracy was within 1% of the best model. We included environmental 
variables as candidate predictors that were minimally influenced by human activity (Table 2). 
We then used the randomForest package (Liaw and Wiener, 2002) to construct a final 500-tree 
O/E model using the predictor variables selected in the RFE analysis.  
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Evaluating O/E index performance: We optimized the models to minimize the standard 
deviation (SD) of reference site O/E scores at calibration reference sites. We evaluated O/E 
index performance by comparing the SD of the predictive O/E index to the SD of the null O/E 
index (i.e., all sites are in a single cluster and capture probabilities for each taxon are the same 
for all sites), to ensure that the predictive index had a lower SD than the null index. 
Additionally, we compared the predictive O/E index SD to the highest attainable precision 
possible based on estimates of the standard deviation among replicate samples (SDRS; Van 
Sickle et al., 2005). We also evaluated the O/E index for bias by regressing O against E within 
reference sites, with slopes close to 1 and intercepts close to 0 indicative of better 
performance. We evaluated the model’s ability to differentiate reference from stressed sites 
using a t-test as implemented in the R stats packages. We modified scripts written by J. Van 
Sickle for evaluating O/E model performance (John Van Sickle, USEPA, 2005) in addition to 
developing custom scripts that are available online (github.com/sccwrp). As low numbers of 
expected taxa have been shown to impact index performance (Mazor et al., 2016; Hamalaine et 
al., 2018), we evaluated O/E model sensitivity to low E values by calculating precision (standard 
deviation of reference calibration site scores for each index), sensitivity (proportion of high 
activity sites not in reference condition), and accuracy (percent of reference calibration sites 
above 10th percentile of reference) at each maximum E value from 0 to 30 expected taxa.   
 
MMI construction: The MMIs were constructed in the following steps: 1) calculate metric raw 
values; 2) develop random forest models to predict metric values at reference sites and replace 
raw values with differences from predicted values if appropriate; 3) score metrics; 4) select 
best-performing metrics and assembled proto-MMIs; 5) assemble MMI with most frequent 
high-performing metrics.  
 
Metric calculation: As in the O/E model development, we performed all metric calculations on 
a presence/absence data matrix. Using species-level data, all metrics were calculated as both a 
proportion of total taxa and total count of taxa that met specific trait attributes. For the hybrid 
MMI, we used a combined table including both diatom and SBA taxa, for calculating metric 
values. Species’ trait attributes were obtained from previously published algae attribute lists 
(Bahls, 1993; Dam et al., 1994; Porter et al., 2008; Potapova and Charles, 2007; Spaulding et al., 
2010),  previously published empirically-derived traits for southern California taxa (Fetscher et 
al., 2014), and empirically-derived traits as part of this study. Additionally, we leveraged trait 
attributes developed as part the French diatom index SPI (Specific Polluosensitivity Index, 
(Cemagref, 1982; Coste, 1986)) as well as traits derived by a panel of algal ecologists and 
taxonomists for the California Biological Condition Gradient (BCG; Paul et al., in prep). For both 
the SPI and BCG trait attributes, higher numbers (range 1-5) indicate species with greater 
tolerance for disturbed or stressed condition. For deriving a genus-level trait attributes table, 
when all species within a genus shared a trait attribute with 100% fidelity, that trait attribute 
was assigned for the genus. For identifying “sensitive” and “tolerant” California taxa as part of 
this study, we used an Indicator Species Analysis as implemented in the multipatt function in 
the indicspecies R package (Caceres and Legendre, 2009) and classified sensitive taxa as 
enriched at reference sites and tolerant taxa as those taxa enriched at stressed sites. We 
grouped metrics into thematic categories based on their autoecological, morphological, 
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taxonomic, or species tolerance guilds (Table 3). We calculated all metrics using a combination 
of the R language vegan package (Oksanen et al., 2017) and custom R scripts 
(github.com/sccwrp). 
 
Prediction of metric values at reference sites: We developed random-forest models to predict 
values for all metrics at reference calibration sites based on the same candidate environmental 
variables that were used for O/E index development (Table 2). We again used an RFE approach 
to select the best performing predictive models for each metric and created a final 500-tree 
random-forest model for each metric based on the predictors used in the model selected by 
RFE. We then used the final model to predict metric values for all sites. To evaluate how well 
each model predicted metric values, we regressed raw observed values against predicted 
values for reference sites. Slopes close to 1 and intercepts close to 0 indicate better model 
performance. If the pseudo-R2 of the model (calculated as 1 – mean squared error 
[MSE]/variance) was > 0.2 (following Mazor et al., 2016), we adjusted metric values by 
subtracting predicted values from observed values. For other metrics, we used the observed 
metric values, presuming that the influence of natural gradients on metric values was too small 
to introduce bias. 
 
Metric scoring:  Metric values were scored to account for differences in scale direction of 
response to stress among metrics (Blocksom, 2003). This scoring transformed metrics to a 0 to 
1 scale, with lower scores indicative of more stressed conditions and greater deviation from 
reference sites. We scored metrics after Cao et al. (Cao et al., 2007). We scored metrics that 
decrease with human activity as  

 
(Observed−Min) / (Max−Min) 

 
where Min is the 5th percentile of high-activity calibration sites and Max is the 95th percentile 
of reference calibration sites. We scored metrics that increase with human activity as 
 

(Observed−Max) / (Min−Max) 
 

where Min is the 5th percentile of reference calibration sites, and Max is the 95th percentile of 
high-activity sites. We trimmed all scores outside the range of 0 to 1.  

 
Metric selection: We selected metrics for possible inclusion in an MMI based on a series of 
screening criteria (Table 4). First, metrics were eliminated if they had inadequate range, which 
we defined as containing > 1/3 zero or one scores (Stoddard et al., 2008) and median scores at 
reference and stressed sites > 0 (Stevenson and Zalack, 2013). We evaluated metric the signal-
to-noise (S:N) ratio, the ratio of the variance among all sites (signal) to the variance of repeated 
visits to the same site (noise) (Kaufmann et al., 1999). Metrics passed with a S:N ratio > 1.5 
(Stoddard et al., 2008). Additionally, we eliminated metrics with a ratio of between-site to 
within-site variance < 3 (Mazor et al., 2016; Stoddard et al., 2008). We evaluated metric 
responsiveness by t-test of the metric scores in reference and stressed sites (Table 4). We 
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assessed bias by determining whether metric values at reference sites varied among regions, 
using a threshold of an ANOVA F-statistic > 3.  
 
Assembling the MMI: All metrics that met screening criteria for each assemblage were 
assembled into all possible combinations (proto-MMIs). We selected the top-performing proto-
MMIs using a screening criteria of ANOVA F statistic for regional bias < 3 and a precision 
standard deviation of reference calibration scores < 0.2. We then calculated the most frequent 
metrics in these top performing proto-MMIs and grouped these metrics into thematic types, 
ensuring a distribution of final metrics across thematic categories (Table 3). The winning 
metrics were assembled into the final MMI. We calculated scores for the final MMI by 
averaging metrics scores and rescaling by the mean of reference calibration site scores. This 
process results in an index that, like the O/E index, has a mean of 1 at reference calibration 
sites.  
 
We calculated a combined O/E + MMI score by averaging final MMI and O/E scores for each 
assemblage.  

 
MMI performance evaluation: Multi-metric index performance was evaluated using a series of 
criteria: a) accuracy, or the performance of the index as unbiased against environmental setting 
or time of sampling; b) precision, or the low variability of the index score within reference sites 
and among samples from repeated visits within sites; c) responsiveness, or the ability to show 
large responses to human activities and d) sensitivity, or the ability to score a non-reference 
site below the impairment threshold. We compared predictive index performance to its null 
counterpart and also compared performance scores for all indices with both calibration and 
validation datasets (Table 7). Accuracy was assessed my comparing mean scores at reference 
sites. Additionally, we assessed regional bias by calculating the ANOVA F statistic for all 
reference site scores across Perennial Stream Assessment (PSA) ecoregions. To further assess 
regional bias and the influence of natural gradients, we created random forest models using all 
available environmental variables (Table 2) to predict reference site scores, with a lower 
variance score indicative of a smaller influence of environmental variables on index scores at 
reference sites. For precision, we evaluated the standard deviation of index scores at reference 
sites and between sites with repeat sampling events. For responsiveness, we compared t-
statistic values for t-test analyses comparing reference and stressed site scores. Additionally, 
we created random forest models using all available stressor gradient variables (Table S2) to 
predict scores at all sites, with a higher variance score indicative of a larger response to stressor 
gradients. Lastly, we calculated a series of Spearman’s correlations between index scores and 
key environmental and stressor gradients (Table 6; Table S2).  
 
Reference-based thresholds and comparison to other indices: To determine reference-based 
thresholds for all indices, we determined the 1st, 10th, and 30th percentile of reference 
calibration scores for all indices using the qnorm function as implemented in the stats package 
in R (R Core Team, 2013). To compare algal index performance from this work to previously 
published algal Southern California Index of Biotic integrity (Fetscher et al., 2014), we divided 
the SoCal IBI by the average scores at reference calibration sites. Because the CSCI scores have 
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a reference calibration mean of 1, this normalization was not necessary. To compare CSCI and 
algal index performance, we created a series of generalized additive models as implemented in 
the R package mgcv (Wood, 2017) to model the response of the indices to stressor gradients. 
To compare algal dataset structure to the CSCI index developmental dataset, we calculated 
Bray-Curtis distances among all reference calibration sites using “vegdist” as implemented in 
the R package vegan (Oksanen et al., 2017) on a presence/absence transformed matrix for both 
the BMI and algae taxonomy datasets. Benthic macroinvertebrate taxonomy data was sourced 
from Mazor et al., (2016).  
 
RESULTS 

 
Development dataset statistics: Of 1943 sampling locations, we classified 28% of sites as 
“Reference”, 33% as “Intermediate”, and 37% of sites as “Stressed” (Figure S1). The greatest 
number of Reference sites were found in the high elevation Sierra Nevada region, and fewest in 
the Central Valley region (Table 10).  
 
O/E model for predicting algal community composition at reference sites: Diatoms, soft-
bodied algae, and hybrid assemblages exhibited minimal geographic clustering across 
California’s ecoregions (Figure S2); instead, sites with similar biological assemblages were 
intermingled and dispersed across the state. For diatoms, soft-bodied algae, and hybrid 
assemblages, we identified 13, 9, and 9 clusters, respectively. Predicted conductivity (i.e. 
background reference conductivity) and watershed area were selected as predictor variables 
for all three assemblage types (Table 2). The hybrid model predictor variables were shared in 
common with the diatom and SBA models, whereas the diatom and SBA models shared few 
predictor variables with each other. The genus-level diatom MMI had only two predictor 
variables (predicted conductivity and site elevation) and shared both of these with the diatom 
and hybrid O/E models.   
 
Although all three assemblages resulted in O/E indices that performed better than indices 
developed from null models, the diatom O/E index had the best performance overall. For 
example, it had the best precision, as indicated by the lowest standard deviation among 
reference calibration site scores and lowest variability at sites with replicate samples (Figure 1). 
It also had the least biased prediction, as indicated with regression slope nearest to 1 and 
intercept closest to 0 (Table 5). Whereas the diatom O/E index had the best precision, the soft-
bodied algae index was the most responsive to key stressors such as nitrogen and phosphorous 
gradients.   
 
Predicting metric values and assembling the MMIs: For all species-level metrics, few metrics 
passed the preliminary screening stage for consideration as a modeled metric (pseudo-R2 value 
> 0.2; Table S3): five metrics for diatoms, four metrics for the hybrid assemblage, and none for 
the soft-algae. For both the diatom and hybrid modeled metrics, the metrics were those based 
on trait attributes that had been assigned specifically for the California dataset and were 
focused on highly tolerant species: metrics that calculated numbers of BCG Level 4+5 taxa and 
highly tolerant taxa from the indicator species analysis. After the final species-level MMIs were 
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assembled, all resulting MMIs were comprised of only unmodeled metrics due to predictive 
metrics being excluded for other screening criteria, often the measure of regional bias (Table 
S3). Of the genus-level metrics we evaluated, only 4 diatom metrics required modeling to 
account for the influence of natural factors: metrics based on the presence of nitrogen or 
phosphorus indicators, the proportion of planktonic taxa, and the proportion of SPI Level 4+5 
taxa. No genus-level metrics for the other assemblages required modeling (Table 6).  
 
 
Metrics selected for the MMIs: Of 150 metrics evaluated for the species-level assemblages, 3, 
8, and 7 metrics passed all screening thresholds for the diatom, soft-bodied algae, and hybrid 
species MMIs, respectively (Table S3). The most frequently failed screening metrics was the 
measure of regional bias. The remaining acceptable metrics yielded between 100,000 and 
200,000 proto-MMIs for each assemblage. After screening the prototype MMIs for regional 
bias, precision, sensitivity, and redundancy, we assembled the winning MMIs. For diatoms, soft 
algae and hybrid species-level MMIs, there were a final total of 6, 7, and 8 unmodeled metrics, 
respectively (Table 7). For the genus-level diatom metrics, 3 metrics passed all screening 
thresholds for the diatoms and hybrid assemblages, and no metrics pass all screens for the soft 
algae. Both the SBA and the hybrid genus-level MMIs failed to produce any proto-MMIs that 
passed the screening thresholds related to responsiveness and precision. The winning genus-
level diatom MMI was comprised of a single modeled metric (proportion of SPI level 4+5 taxa) 
and 6 unmodeled metrics (Table 6). 
 
Effects of predictive modeling on metric performance: Multiple metrics across species-level 
assemblages showed improvements in their regional bias when these metrics were modeled 
compared to unmodeled metrics. For example, the diatom metric for the proportion of species 
from the low phosphate indicator taxa, which saw an almost 20-fold decrease in the regional 
bias (from 19.7 to 0.9 ANOVA F statistic) when modeled. Yet, despite this improvement, these 
metrics were never selected for inclusion in the final MMIs. One example is the diatom metric 
for the proportion of species from the low phosphate indicator taxa, which saw an almost 20-
fold decrease in the regional bias (from 19.7 to 0.9 ANOVA F statistic) when modeled. 
Frequently, the modeled metric was much less responsive than the unmodeled version, as 
indicated by a lower t-statistic in discriminating high-activity versus reference sites (Table S3). 
For example, for the diatom metric of species count for BCG 5 taxa, the t-statistic dropped from 
31 to 18 for the raw and predictive metrics, respectively, whereas the regional bias dropped 
from an ANOVA F statistic of 32 to 26. For 12 of the 13 modeled metrics (both species and 
genus level), the absolute t-statistic (reference vs. stressed site scores) was higher (difference in 
|t| >1) for the raw metric than for the modeled metric. For these same metrics, 8 of the 13 
modeled metrics had a better regional bias score in the modeled metric than the unmodeled 
metric (Table S3).  
 
Performance evaluation of the O/E, MMI, and combined indices: As detailed above, the 
predictive O/E models outperformed their null counterparts, whereas the final species-level 
MMIs were comprised of non-predictive metrics, only. Across all assemblages, the MMIs out-
performed the O/E models for precision and responsiveness (Table 8); at the same time, 
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regional bias was slightly higher for the MMIs than the O/E models (Table 8). The performance 
of the combined index (O/E + MMI) was variable across species assemblages. In general, all 
assemblages had lower regional bias and weaker responsiveness to nutrient stressors with the 
combined index compared to the MMI index alone. Soft-bodied algae and the hybrid combined 
indices also had worse precision than the MMI indices alone (Table 8). Of the three MMI 
indices, the hybrid MMI had the best performance statistics with regards to precision and 
responsiveness (Table 8), making it arguably the best performing of the three species-level 
MMIs. The genus-level diatom MMI had worse responsiveness than the species-level MMIs, 
although good accuracy and precision.  
 
Additionally, final indices with a predictive component (i.e., the O/E indices and the genus-level 
MMI) had less influence by environmental gradients than their null counterparts (accuracy 
variance, Table 8). For the non-predictive indices, the soft-bodied algae MMI had the lowest 
natural variance scores. Notably, the diatom and hybrid non-predictive MMI’s had validation 
data with very low natural gradient variance scores, indicating that influence from natural 
factors was likely very low (Figure 2). Within-site and between-site standard deviation for 
reference calibration site scores was strongly positively correlated (Pearson’s r = 0.9) for all final 
indices, with the soft-bodied algae O/E having the worst precision (reference calibration within 
site 0.38 SD). Both the species- and genus-level MMIs had the highest responsiveness, as 
indicated by their ability to discriminate reference from stressed sites (t statistic, Table 8), 
whereas the O/E indices had the worst responsiveness. The same pattern was observed in in 
looking at index response to stressor gradients (nitrogen, phosphorus, specific conductivity), 
with the hybrid MMI being the most responsive index (Table 8, Figure 4). 
 
Effect of low numbers of expected taxa on O/E performance: Performance of the O/E indices 
was better at high-E than at low-E sites, with null models out-performing O/E models at E 
values less than 10 (Figure 5). For diatoms, soft-bodied algae, and hybrid O/E indices, the null 
indices had consistently poorer accuracy and precision when E values were greater than 10, 
with both the null and predictive models averaging 88% of reference calibration sites scoring 
above the 10th percentile of reference site scores. With the regards to sensitivity, the predictive 
O/E model out-performed the null models for diatoms and hybrid but not for the soft-bodied 
algae model. In contrast, the soft-bodied algae predictive O/E model had the most 
improvement over the null model with regards to precision, with the predictive model 
averaging 0.38 for the predictive model and 0.43 for the null model.  
 
Distribution of biological condition classes across state: We established 4 biological condition 
classes based on the distribution of algal index scores at reference calibration sites (Table 9; 
Table 10). Statewide, 47% of streams were likely to be intact (hybrid MMI ≥ 0.93 [30th 
percentile of reference calibration sites]). Another 18% were possibly altered (hybrid MMI ≥ 
0.83 [10th percentile]), 19% were likely to be altered (hybrid MMI ≥ 0.69 [1st percentile]), and 
16% were very likely to be altered (< 1st percentile; Table 10).  
 
Although 38% of stressed, high-activity sites were very likely to be altered, this number varied 
considerably by region. The South Coast and the Chaparral had the highest percent of stressed 
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sites that were considered very likely to be altered (52 and 27%, respectively), while only 4% of 
the North Coast and none of the Sierra Nevada stressed sites were classified as likely altered. 
Statewide, about 75% of reference sites were classified as likely to be intact, with the highest 
percentage in the Sierra Nevada and North Coast regions (82 and 78%, respectively), and lowest 
in the Central Valley where there were only 2 reference sites (Table 10).  
 
Relationships to environmental and stressor gradients: All three assemblages yielded O/E and 
MMI indices that were unbiased with respect to environmental variables (Figure 2; Table 8). 
The O/E indices had the lowest correlation to environmental gradients, indicating that the 
geographic modeling helped to account for some regional variability. However, the MMI indices 
also had environmental gradient correlation values that were very low and often within the 
within site standard deviation (0.8-0.9) (Figure 3; Table S2). The strongest environmental 
gradient relationship to the MMI indices (at reference calibration sites) were the measures of 
elevation (elevation range and maximum elevation); multiple O/E models used measures of 
elevation as predictor variables, indicating elevation plays a key role in algal species 
distributions. MMI indices at reference calibration sites also had a slight positive correlation to 
the sampling day of year (Figure 3; Table S2). However, given the large latitudinal variation of 
California’s sampling regions, day of year may be an artifact of latitudinal variability in sampling 
periods: Northern California sites tend to be sampled later in the season, whereas Southern 
California sites dry up earlier in the sampling season. While all three assemblages yielded 
species-level MMIs that responded strongly to stressor gradients, the hybrid MMI clearly was 
the most responsive across both nutrient and urbanization gradients (Figure 6; Table S2).  
 
DISCUSSION   
 
Our analyses have demonstrated that while the final species-level MMI indices generated as 
part of this study lacked any predictive metrics, we were able to derive MMIs with low regional 
bias and statewide applicability. The success of these indices is a credit to the large California 
stream algae reference dataset that allows for the development of robust and sensitive models 
in the face of diverse environmental gradients.  
 
O/E predictive modeling: Although predictive modeling has become common in benthic 
macroinvertebrate bioassessment applications, only a handful of studies have developed 
predictive models for algal communities, namely diatoms (Mazor et al., 2006; Philibert et al., 
2006; Feio et al., 2009, 2012; Almeida and Feio, 2012). Notably, previous studies that have 
attempted to model algal assemblages for the central coast region of California encountered 
difficulties in generating robust predictive models (Ritz et al., 2010; Rollins et al., 2012). 
Previous studies that have generated O/E models for diatom assemblages have resulted in 
models with similar precision and sensitivity to the diatom and hybrid O/E models generated in 
this study; for example, Cao et al. (2007), built an O/E index for diatoms in Idaho, resulting in an 
index with a standard deviation among reference sites of 0.17, on par with the diatom O/E 
model from this study. Reported measures of precision of macroinvertebrate O/E models have 
ranged from 0.13 (Hawkins, 2009) to 0.18 (Van Sickle et al., 2005) to 0.26 (Vander Laan and 
Hawkins, 2014). Linke et al. (2005) recommend O/E models with a slope ranging between 0.85-
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1.15, a criterion met by all three O/E models in this study. Nonetheless, indices from these O/E 
models had poor precision and responsiveness.  
 
Three key factors may be at play in the difficulty of predicting algal assemblages, as in the 
creation of O/E models: a) geographic parameters used as candidate predictor variables are 
largely not responsible for shaping algal species distribution patterns; b) environmental 
characteristics that are good predictors of assemblages in some settings (e.g. high elevation) 
may not be good predictors of algal assemblages in other settings (e.g. lowland streams); c) 
high isolation of freshwater habitats may result in decreased niche partitioning, leading to 
similar geographic areas supporting more distinct algal communities (Vander Laan and Hawkins, 
2014). To address the first potential explanation, we investigated whether expanding our 
predictor variables to include those parameters influenced by human activity (including 
nitrogen and phosphorus, conductivity, in situ temperature) improved our ability to generate 
O/E models. We found that even when including these additional predictors, our O/E models 
saw very little improvement in performance (results not show). Although other studies have 
found that locally measured  environmental variables (such as light availability and velocity) 
may improve model performance (Feio et al., 2012, Sabater et al., 2006; Veraart et al., 2008; 
Bornette and Pujalon, 2011; Aguiar et al., 2011, Lamb and Lowe, 1987; Soininen, 2004), such 
models are less useful for bioassessment index development, as they may be unable to 
separate the influence of natural variation in these factors from anthropogenic disturbance 
(Hawkins et al., 2010; Reynoldson et al., 1997).  
 
To investigate the role of geographic variability in the model performance, we evaluated 
ecoregion as a candidate predictor variable in our O/E models (Table 2), although it was never 
selected as a final predictor for any of the O/E or metric models. Additionally, we evaluated 
ecoregion-specific O/E models for two regions with the largest data density (and available 
reference sites), but their precision did not improve over the statewide model and predictive 
models only marginally out-performed null models (Table S1). The failure of the eco-region 
scale O/E models to out-perform the statewide models suggests that the O/E model 
performance is not constrained by high natural variability in the reference site pool.    
 
Lastly, to assess the potential for isolated habitats to be supporting disparate communities of 
algae, we analyzed the average Bray-Curtis distances among all reference calibration sites for 
both algal populations as well as benthic macroinvertebrate populations (Figure S6). We found 
that on average, pairwise Bray-Curtis dissimilarity between reference sites for algae 
assemblages averaged 0.76, whereas dissimilarities based on BMI assemblages average 0.69, 
indicating that BMI taxa had greater similarity between sites of the reference pool than did 
algal populations. Relatedly, we identified approximately 691 species of BMI taxa at these 
reference sites, whereas there were over 1136 algae species, with average alpha diversity for 
these reference sites was 56 (SD 14) for BMI taxa and 36 (SD 16) for algae taxa. These results 
demonstrate that in comparison to BMIs, algal assemblages have lower species richness at 
reference sites, while at the same time having greater overall species richness (at reference 
sites) across the state and thus greater average dissimilarity between two reference sites. 
Taken together, these results suggest that algal populations at two sites of comparable 
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ecological status and similar geographic setting may have only minimal overlap in species 
composition. Additionally, these dissimilar reference site algal assemblages can help explain the 
low E values that were common across the O/E models: with a greater number of taxa spread 
across reference sites, and few taxa shared among sites, the O/E models were only able to 
confidently predict a handful of taxa at each site. These low E values resulted in poor precision 
and sensitivity in each of the three assemblage O/E models (Figure 5), consistent with previous 
benthic macroinvertebrate O/E model development (Mazor et al., 2016). 
 
Trait attribute completeness dictates metric performance: The majority of all metrics that 
were included in final species-level MMIs were metrics that increased with stress, such as 
percent tolerant taxa and high nitrogen indicators. The decreasing metrics included in the 
species-level MMIs were the result of an indicator species analysis, meaning they were 
specifically tuned to the California taxa. Likewise, the best-performing species-level modeled 
metrics were those that resulted from an indicator species analyses (Table 6). This result 
suggests that we are better able to account for high abundance of taxa at highly degraded sites, 
as opposed to accounting for taxa that become increasing rare under stressed conditions. The 
use of the indicator species analyses allows for the identification of these sensitive taxa, a trait 
attribute that may be otherwise overlooked in empirical studies. Similarly, increaser taxa are 
often the focus of specialized studies to develop stressor-tuned indices (Teply 2010a,b; Teply 
and Bahls 2005,2006) and therefore comprise the majority of trait attributes available in 
published literature. In contrast, the genus-level diatom MMI was split almost evenly between 
increasing and decreasing metrics. Aggregating trait attributes to the genus level may have 
helped improve the ecological signal of the decreasing metrics that otherwise have sparkly 
populated species attributions. Likewise, the single predictive metric from the genus-level 
diatom MMI was a measure of pollution tolerance (SPI value), an attribute that is assigned 
specifically at both the genus and species level. Taken together, these results suggest that the 
paucity of trait attributes available for algae species contributes to the inability to develop 
predictive models for individual metrics, and that trait attributions for sensitive taxa should be 
a priority focus of future studies. 
 
Performance of MMI: Our analyses revealed that modeling metric scores using geographic 
setting did not improve metric performance. Given that algae can exhibit regionally-specific 
responses to environmental perturbation (Stevenson, 2014), we wanted to ensure that the 
statewide index was not biased by regional variation in natural gradients. We evaluated 
regional bias using a test of reference site scores across regions (PSA ecoregions), a screening 
measure that often improved with predictive modeling. Eliminating metrics with high regional 
bias scores often resulted in final MMIs with lower sensitivity in discriminating reference versus 
stressed sites (Table S5); however, it is worth noting, this loss in sensitivity is in fact a removal 
of geographic artifacts that give way to spurious results masquerading as index sensitivity. All 
final MMIs had low regional bias scores (Figure 2) in spite of their lack of predictive metrics. For 
this reason, we recommend future algal index development follows strict screening criteria to 
eliminate regional bias that can easily be conflated with index sensitivity.  
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Comparison to other California biological indices: The Southern California Index of Biotic 
Integrity (SoCal IBI, Fetscher et al., 2014) served as a precursor to the MMIs created as part of 
this study, and their final MMIs shared many elements. In particular, there were a number of 
final metrics included in the species-level MMIs that were also in the SoCal IBIs, including 
metrics generated using the indicator species analysis trait attributes for nitrogen, phosphorus, 
copper, and DOC. (Table 6). Of the three assemblages, the species-level hybrid MMI had the 
strongest relationship to the SoCal IBI hybrid MMI (H20, Fetscher et al., 2014) with an R2 of 0.49 
(Figure S4) for statewide scores. Like the SoCal IBI, the hybrid MMI in this study was the most 
responsive index. In contrast to the findings of Lavoie et al., (2004), the incorporation of SBA 
improved index performance over that of diatom assemblages alone. While SBA and diatoms 
are known to respond differently to stressor gradients, such as nutrient over-enrichment 
(Schneider et al., 2013), it is important to emphasize that the responsiveness of the index may 
reflect both an ecological characteristic of the algae as well as the sensitivity of the index itself. 
Our data suggests that the hybrid approach may offer an expanded suite of trait attributes that 
a single assemblage approach does not, therefore providing a more comprehensive trait 
attributes dataset to leverage for metric construction. 
 
The final species-level MMIs showed clear concordance with the benthic macroinvertebrate 
CSCI index across a variety of stressor gradients (Figure 7). In particular, the CSCI demonstrated 
a more sensitive response to physical habitat measure of percent sands and fines than any of 
the algal MMIs presented here, in agreement with previous studies comparing the CSCI to algal 
IBI performance (Rehn, 2016). Across all sites with both CSCI and ASCI scores, the two indices 
both ranked a site as “very likely intact” (> 10th percentile of reference for both CSCI and hybrid 
MMI) 75% of the time. When the two indices did not agree, the CSCI ranked a site below the 
10th percentile of reference 15% of the time, while the hybrid MMI did 10% of the time (Figure 
S7). The Sierra Nevada and North Coast regions had the greatest proportion of sites in 
agreement, with both indices giving high scores. Notably, the South Coast and the Chaparral 
regions had strong agreement between the two indices, even when both indices scored a site 
below the 10th percentile of reference. As BMI and algae are known to have different 
sensitivities to environmental stressors (Sonneman et al. 2001; Johnson et al 2009), the two 
indices provide complimentary lines of evidence on biological condition, as highlighted by both 
their agreement and disagreement in scoring sites across broad environmental gradients. 
Future work will explore the potential environmental drivers of variable performance between 
the two indices.  
 
Weighing the variable performance measures for select the best combination of metrics: As 
discussed above, the O/E model performance fell within the range of previously published O/E 
studies (), in particular for the diatom and hybrid models, yet the O/E index responsiveness 
made them less effective at discriminating reference from stressed condition. In comparison, 
the species-level MMIs performed well across all screening metrics, including precision, 
sensitivity, accuracy, and responsiveness, despite the lack of modeling to account for the 
influence of natural factors. The motivation to include an O/E component in the resulting final 
index stems from the fact that O/E measures an inherently different component of the 
biological health than the MMI: the O/E index is evaluating the taxa lost to disturbance, 
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whereas the MMI is assessing ecological structure of the community (Mazor et al., 2016). To 
this end, we evaluated the inclusion of the O/E+MMI as a final index (Table 8). However, for all 
three assemblages, the combination of the O/E to the MMI only served to weaken the MMI 
performance into ranges outside our target performance thresholds, specifically for precision 
and accuracy. Therefore, the MMI models were stronger independent of the O/E models and 
the O/E models should be used only as a supplemental information on predicted species at test 
sites and not as a component of the final index score.  
 
Choosing indices for different purposes: Since all three assemblages yielded high-performing 
MMIs, the critical next task for a regulatory program is selecting an appropriate index for 
making assessments. There are a number of factors that may go into this decision, including a) 
performance of index across environmental and stressor gradients; b) cost and regional 
capacity to perform taxonomic analyses; c) ease and consistency of field and laboratory results. 
Our results have demonstrated that the hybrid index is the most responsive index to nutrient 
stressor gradients (Table 8). The soft-bodied algae index had the lowest regional bias, whereas 
the hybrid and soft-bodied algae species level MMIs had the best precision. The genus-level 
diatom MMI also had low regional bias, but it was less responsive than the species-level MMIs. 
From a cost perspective, a hybrid index results in the largest economic burden for analysis, 
requiring two separate assemblages, but this expense may prove worthwhile if it is the most 
sensitive, informative index. Diatoms require less processing for lab analyses and are often 
more cost-effective () whereas soft-bodied algae are important for linking nutrient enrichment 
to algal biomass and determining the presence of potentially toxigenic species (Manoylov, 
2014; Stancheva and Sheath, 2018). Lastly, monitoring programs rely on standardized sampling 
protocols and extensive quality control processes. A number of states as well as the National 
Water Quality Assessment program (NAWQA) have focused primarily on diatoms indices 
because of the difficulty in sampling soft-bodied algae in the field and standardization of lab 
analyses (), while California has included both assemblages in their bioassessment field 
protocols (Ode et al., 2016). The advent of molecular methods in bioassessment may help to 
eliminate many of the obstacles facing multiple-assemblage approaches, namely that 
sequencing approaches have the potential to decrease the expense of generating taxonomic 
data, enabling the analysis of multiple species assemblages. Additionally, DNA-based analytical 
approaches can rely on bioinformatic and standardized computational pipelines as opposed to 
expert taxonomists (Pawlowski et al., 2018). All of these factors should be weighed by 
regulatory agencies when evaluating the appropriate algal index for their unique programs.  
 
CONCLUSIONS  
 
This study evaluated a suite of both predictive and non-predictive indices for diatoms and soft-
bodied algae in California. Designed after the benthic macroinvertebrate California Stream 
Condition Index (CSCI), we generated both O/E and MMI indices, as well as a combined O/E and 
MMI indices. Across all species assemblages, the MMI indices had superior precision and 
responsiveness, while the O/E indices had superior regional bias performance due to their 
incorporation of geographic parameters in their predictive models. However, the O/E indices 
were plagued by poor precision, likely due to the highly diverse algal species assemblages that 
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limit predictability of species distributions, resulting in low expected taxa values and unstable 
indices. 
 
Our best performing O/E indices were developed using genus-level taxonomy data, in part 
because aggregating taxonomy data to genus level helped to increase the expected taxa values 
(E) and therefore help stabilize the index performance. In contrast, the best-performing MMIs 
used species-level taxonomy data, a consequence of the fact that trait attributes, the 
cornerstone of metric calculations, are often attributed at the species (or lower) level, and the 
majority of genera in our statewide dataset currently lack trait attributes. This difference 
highlights the need for a more comprehensive effort to derive trait attributes for taxa in 
California, given that many taxa are endemic and without known trait attributes. With an 
improved attributes dataset, there is an opportunity in the future to develop genus-level multi-
metric indices for soft-algae and diatoms that may help alleviate the statewide taxonomic 
capacity burden that is currently an obstacle to many monitoring programs.  
  
The primary goal of this study was to develop an algal index that has statewide applicability for 
California. The MMIs developed as part of this study build upon the work of Fetscher et al. 
(2014) and with the advantage of a larger, more comprehensive dataset we were able to 
develop a suite of robust indices that can be applied statewide. The diatom, soft-bodied algae, 
and hybrid species-level MMIs can be used as a secondary indicator alongside the CSCI for 
performing condition assessments of wadeable streams, as well as for identifying priority 
waterbodies for protection and performing causal assessments. With the goal of this novel 
index having widespread applicability to regulatory agencies and monitoring programs, we have 
provided all MMI calculator code (github.com/sccwrp) and encourage users to contact us with 
any questions on the calculation of these index scores.  
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Table 1. Stressor and human-activity gradients used to identify reference sites and high-activity sites. Sites that did 
not exceed the listed reference thresholds were used as reference sites. Sites that exceeded at least one high-
activity threshold (str threshold) were used as high-activity (“stressed”) sites. Sources A = National Landcover Data 
Set; B = custom roads layer; C = National Hydrography Dataset Plus; D = National Inventory of Dams; E = Mineral 
Resource Data System; F = field-measured variables. WS = watershed; 5 km = watershed clipped to a 5-km buffer 
of the sampling point; 1 km = watershed clipped to a 1-km buffer of the sampling point; W1_HALL = proximity-
weighted human activity index (Kaufmann et al., 1999), Code 21 = land-use category that corresponds to highly 
managed vegetation, such as roadsides, lawns, cemeteries, and golf courses. 
 

Variable Scale Ref threshold Str threshold Unit Source 

% agricultural  1 km, 5 km, WS  < 3  > 50 % A 

% urban 1 km, 5 km, WS  < 3  > 50 % A 

% agricultural + % urban 1 km, 5 km, WS  < 5 
 

% A 

% Code 21 1 km, 5 km < 7 > 50 % A 
 

WS < 10 > 50 % A 

Road density 1 km, 5 km, WS  < 2 > 5 km/km2 B 

Road crossings 1 km < 5 
 

crossings B, C 
 

5 km < 10 
 

crossings B, C 
 

WS < 50  
 

crossings B, C 

Dam distance WS < 10  
 

km D 

% canals and pipelines WS < 10 
 

% C 

Instream gravel mines 5 km < 0.1 
 

mines/km C, E 

Producer mines 5 km 0 
 

mines E  

W1_HALL Reach < 1.5 > 5 NA F 

% sands and fines Reach 
  

% F 

Slope Reach 
  

% F 
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Table 2. Natural gradients evaluated as predictor variables for inclusion in both the O/E and genus-level diatom 
MMI Random Forest models. Genus-level diatom MMI predicted metric = proportion SPI species 4+5. A = PRISM 
climate database ((Stancheva and Sheath, 2016)); C = Olson and Hawkins (2012); D = National Atmospheric 
Deposition Program National Trends Network (http://nadp.slh.wisc.edu/ntn/); M = National Elevation Dataset 
(http://ned.usgs.gov/).  
 

Variable Description Diatom 
O/E 

SBA 
O/E 

Hybrid 
O/E 

Diatom 
MMI  

Ref 

  
Gini Gini Gini MSE 

 

AREA_SQKM Area 
 

45.27 
  

D 
AtmCa Catchment mean of mean 1994–2006 annual precipitation-

weighted mean Ca+ concentration 

 
45.54 

  
D 

AtmMg Catchment mean of mean 1994–2006 annual precipitation-
weighted mean Mg+ concentration 

     

BDH_AVE Catchment mean bulk density  
    

C 
CaO_Mean Calcite mineral content 

    
C 

CondQR50 Median predicted conductivity (reference) 43.47 43.98 41.99 
 

C 
DayOfYear Day of year 

 
49.02 40.91 

  

ELEV_RANGE Elevation range of catchment  
    

M 
KFCT_AVE Catchment mean soil erodibility (K) factor  

    
C 

LogWSA Area of the unit of analysis  46.40 33.16 45.22 15.88 
 

LPREM_mean Catchment mean log geometric mean hydraulic conductivity  
    

C 
LST32AVE Average of mean 1961–1990 first and last day of freeze 39.97 

 
40.74 

 
D 

MAX_ELEV Maximum elevation in catchment  42.14 
 

39.70 
 

M 
MAXWD_WS Catchment mean of 1961–1990 annual maximum number of wet 

days  
40.87 

   
D 

MEANP_WS Catchment mean of mean 1971–2000 annual precipitation 
  

39.28 
 

D 
MgO_Mean Magnesium oxide mineral content 

    
C 

MINP_WS Catchment mean of mean 1971–2000 minimum monthly 
precipitation  

    
D 

Month Month  
 

18.67 
   

New_Lat Latitude 
 

47.85 38.60 
  

New_Long Longitude 42.07 
 

37.01 
  

PCT_CENOZ Percent Cenozoic sediments 
     

PCT_NOSED Percent non-sedimentary or volcanic geology 
     

PCT_QUART Percent Quarternary geology 
     

PCT_SEDIM Percent sedimentary geology 
     

PCT_VOLCNC Percent volcanic geology 
     

PPT_00_09 10-y (2000–2009) average annual precipitation 
   

19.44 A 
PRMH_AVE Catchment mean soil permeability  

    
C 

PSA6c PSA region 
     

S_Mean S-bearing geology 
     

SITE_ELEV Site elevation 40.45 
 

39.62 
 

M 
TEMP_00_09 10-y (2000–2009) average monthly temperature 37.96 

   
A 

TMAX_WS Catchment mean of mean 1971–2000 maximum temperature 
 

48.99 
  

D 
UCS_Mean Catchment mean unconfined compressive strength  

    
F 

XWD_WS Catchment mean of mean 1961–1990 annual number of wet days 
    

D 
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Table 3. Metric classes for multi-metric index. BCG taxa = taxa identified as indicative of a Biological Condition 
Gradient (BCG) Level indicators from the California BCG effort (Paul et al., in prep.); SPI taxa = taxa with a pollution 
tolerance indicator level designation (Coste, 1986).  
 

Category Example metrics 
Tolerance/sensitivity  Association with specific water-quality constituents 

(nitrogen, phosphorus, organic carbon, metals)   
Low/High oxygen preference  
Salinity tolerance  
SPI index level 

Autecological guild  Nitrogen-fixers  
Saprobic/heterotrophic taxa 

Morphological guild  Sedimentation indicators  
Relationship to 
reference  

Taxa associated with reference vs. non-reference sites 
 

BCG taxa level  
Taxonomic groups  Chlorophyta, Rhodophyta, Zygnemataceae, 

heterocystous cyanobacteria, Suriella, Cyclotella  
Diversity Richness 
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Table 4. Metric screening criteria for evaluating inclusion in the MMI. Description of criteria, statistical test, and 
threshold for passing.  
 

 
 
 
 
  

Description Test Threshold Reference 
Regional bias ANOVA of metric values at reference 

sites by ecoregion (PSA) 
F statistic < 3 Mazor et al., 2016 

Sensitivity t-test comparing reference/stressed 
site scores (t statistic > 10) 

F statistic > 2  Mazor et al., 2016 

Frequency of Zero Frequency of score = 0  < 33% of scores Stoddard et al., 2008 
Frequency of One Frequency of score = 1 < 33% of scores Stoddard et al., 2008 
Range of Ref scores Median score at reference sites > 0 Stevenson and Zalack, 2013 
Range of Stress scores  Median score at stressed sites > 0  Stevenson and Zalack, 2013 
Signal to Noise Variance across all sites / variance at 

repeat site visits 
> 1  Stoddard et al., 2008 

Repeat visit variation ANOVA on repeat samplings of station 
codes 

F statistic < 3  Mazor et al., 2016 
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Table 5. Performance results for the O/E predictive models for each assemblage at calibration (cal) and validation 
(val) reference sites.  
  

Variation explained O Regression slopes Intercepts  
Cal Val Cal Val Cal Val 

Diatom 0.49 0.34 1.015 0.871 -0.079 1.226 
Soft-bodied algae 0.52 0.49 0.977 1.037 0.117 -0.314 
Hybrid 0.60 0.55 1.037 0.962 -0.305 0.180 
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Table 6. Metrics selected in final diatom, soft-bodied algae, and hybrid MMIs. Asterisk denotes modeled metrics. 
BCG 3 taxa = taxa identified as indicative of a Biological Condition Gradient (BCG) Level 3 indicator status from the 
California BCG effort (Paul et al., in prep.); SPI 2 taxa = Taxa with a pollution tolerance indicator level 2 designation; 
NHHONF = N-heterotrophic-high organic N (facultative); SPI 4+5 taxa = Taxa with a pollution tolerance indicator 
level 4 or 5 designation; NAHON = N-autotrophic-high organic N; least tolerant taxa = sensitive taxa identified 
through indicator species analysis.   
 

 Species-level Genus-level Response to 
stress 

Description Diatom SBA Hybrid Diatom  

Count species: BCG 3 taxa x x x 
 

Increase 
Count species: high copper indicators from Fetscher 
et al., 2014 

 
x 

  
Increase 

Count species: high DOC indicators from Fetscher et 
al., 2014 

 
x 

  
Increase 

Count species: low total phosphorous indicators 
from Fetscher et al., 2014 

 
x 

  
Decrease 

Count species: SPI 2 taxa 
   

x Decrease 
Proportion individuals: most tolerant taxa  

 
x 

  
Increase 

Proportion species: Cyclotella taxa x 
 

x x Increase 
Proportion species: Green algae 

 
x 

  
Increase 

Proportion species: high copper indicators from 
Fetscher et al., 2014 

  
x 

 
Increase 

Proportion species: high DOC indicators from 
Fetscher et al., 2014 

  
x 

 
Increase 

Proportion species: low total nitrogen indicators 
from Fetscher et al., 2014 

  
x 

 
Decrease 

Proportion species: low total phosphorous indicators 
from Fetscher et al., 2014 

x 
   

Decrease 

Proportion species: NHHONF taxa x 
 

x 
  

Proportion species: non-ref indicators from Fetscher 
et al., 2014 

 
x 

  
Increase 

Proportion species: SPI 4+5 taxa 
   

x* Increase 
Proportion species: Suriella taxa x 

 
x x Increase 

Proportion species: taxa requiring at least 10% 
oxygen 

x 
 

x 
 

Increase 

Richness: NAHON taxa  
   

x Increase 
Proportion species: Gomphonema taxa  

   
x Decrease 

Proportion species: least tolerant taxa  
   

x Decrease 
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Table 7. Screening metric results for chosen metrics in each MMI. Rsq=pseudo R-squared from RandomForest modeling; PSA(F) = F statistic for ANOVA analysis 

of metric scores at reference sites across PSA regions (Central Valley excluded); Ref/Int/Str (F) = F statistic for ANOVA analysis of metric scores across 

Reference, Intermediate, and Stressed sites; Ref/Str t = t statistic for t-test comparison of metric scores at Reference versus stressed sites; Freq = frequence of 

zero and one metric scores; Repeat visits (F) = F statistic for ANOVA analysis of variation in site scores across repeat samplings; Range = range in scores at 

reference (ref) and stressed (str) sites; Signal:Noise = the ratio of the variance among all sites (signal) to the variance of repeated visits to the same site (noise). 

BCG= Biological Condition Gradient; ISA = Indicator Species Analysis; SPI = Specific Polluosensitivity Index; NALON = N-autotrophic-low organic N; CRUS = 

Cladophora glomerata + Rhizoclonium hieroglyphicum + Ulva flexuosa + Stigeoclonium spp. (Stancheva and Sheath; 2016); ZHR = Zygnemataceae + 

heterocystous cyanobacteria + Rhodophyta (Stancheva and Sheath; 2016).  

 
 rsq PSA (F) Ref/Int/Str (F) Ref/Str t Freq Zero Freq One Repeat visits (F) Range (ref) Range (str) Signal:Noise Assem. 
Proportion species: NHHONF taxa NA 3.55 110.87 12.52 0.54 0.00 2.73 1.07 0.91 2.09 diatom 

Proportion species: taxa requiring at 
least 10% oxygen NA 5.06 155.78 14.25 1.08 0.00 2.54 1.19 0.79 1.86 diatom 

Proportion species: Cyclotella taxa NA 1.21 112.25 13.53 1.08 0.00 2.29 1.06 0.93 2.16 diatom 

Proportion species: Suriella taxa NA 1.11 99.30 12.55 1.08 0.00 1.51 1.03 1.03 1.68 diatom 

Count species: BCG 3 taxa NA 5.50 113.57 10.43 1.36 0.00 3.09 0.95 0.60 3.77 diatom 

Proportion species: low total 
phosphorous indicators from 
Fetscher et al., 2014 

NA 0.71 67.86 8.89 0.27 0.00 2.09 0.62 0.31 1.96 diatom 

Proportion species: most tolerant 
taxa NA 4.71 134.37 14.55 0.48 0.00 1.21 1.05 0.91 2.33 sba 

Count species: low total 
phosphorous indicators from 
Fetscher et al., 2014 

NA 2.17 129.32 14.13 1.21 0.00 2.30 1.11 0.86 2.20 sba 

Count species: high copper 
indicators from Fetscher et al., 2014 NA 1.87 188.79 16.43 0.24 0.00 2.20 1.03 0.85 3.13 sba 

Count species: high DOC indicators 
from Fetscher et al., 2014 NA 5.05 190.97 17.23 0.00 0.00 2.15 1.06 0.86 2.56 sba 

Proportion species: non-ref 
indicators from Fetscher et al., 2014 NA 1.63 31.79 7.21 2.90 0.00 2.69 1.08 0.99 2.23 sba 

Proportion species: Green algae NA 2.60 40.48 7.65 1.93 0.00 2.34 1.04 0.59 2.11 sba 

Count species: BCG 3 taxa NA 1.33 54.68 8.23 13.77 0.00 1.97 0.80 0.27 2.26 sba 

Proportion species: NHHONF taxa NA 3.18 157.97 15.51 1.20 0.00 1.96 1.04 0.84 1.75 hybrid 

Proportion species: taxa requiring at 
least 10% oxygen NA 4.65 170.55 14.99 0.72 0.00 1.89 1.19 0.76 1.59 hybrid 

Proportion species: Cyclotella taxa NA 1.66 175.66 17.61 1.20 0.00 1.87 1.06 0.84 1.96 hybrid 

Proportion species: Suriella taxa NA 1.32 95.71 12.69 0.96 0.00 1.33 1.03 1.03 1.90 hybrid 

Proportion species: high copper 
indicators from Fetscher et al., 2014 NA 2.33 134.57 13.44 0.48 0.00 1.28 1.06 0.93 2.54 hybrid 

Proportion species: high DOC 
indicators from Fetscher et al., 2014 NA 1.29 111.00 11.88 0.72 0.00 2.09 1.07 0.92 1.93 hybrid 

Count species: BCG 3 taxa NA 4.07 120.99 11.05 2.15 0.00 2.19 0.92 0.50 2.76 hybrid 
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Proportion species: low total 
nitrogen indicators from Fetscher et 
al., 2014 

NA 1.12 128.00 11.51 3.35 0.00 1.85 0.84 0.38 1.86 hybrid 

Count species: SPI 2 taxa NA 4.58 253.05 21.39 0.00 0.00 2.95 1.03 0.69 4.57 diatom-genus 

Richness: NAHON taxa NA 0.54 13.39 5.29 2.44 0.00 1.73 1.03 1.03 1.58 diatom-genus 

Proportion species: Cyclotella taxa NA 3.37 271.52 20.91 0.27 0.00 1.82 1.12 0.56 2.88 diatom-genus 

Proportion species: Gomphonema 
taxa NA 5.32 25.95 5.81 8.13 0.00 2.86 1.01 0.86 2.18 diatom-genus 

Proportion species: least tolerant 
taxa NA 5.32 25.95 5.81 8.13 0.00 2.86 1.01 0.86 2.18 diatom-genus 

Proportion species: SPI 4+5 taxa 0.2153 0.84 47.40 10.08 2.17 0.00 1.23 0.88 0.66 1.57 diatom-genus 

Proportion species: Suriella taxa NA 1.66 117.71 14.05 0.27 0.00 1.92 1.08 1.08 1.99 diatom-genus 
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Table 8. Performance measures to evaluate all final indices. MMI = multi-metric index and observed (O)/ expected (E) taxa index at calibration (Cal) and 

validation (Val) sites, level = taxonomic level, Assem= assemblage, Type = null or predictive indices. For accuracy tests, only reference sites were used. 

Accuracy: mean score (ref) = mean score of reference sites (* indicates value is mathematically fixed at 1); F = F-statistic for differences in scores at reference 

calibration sites among 5 PSA regions (Central Valley); Var = variance in index scores explained by natural gradients at reference sites. Precision: among sites = 

standard deviation of scores at reference sites; within sites = standard deviation of within-site residuals for reference calibration and validation sites with 

multiple samples. Responsiveness: t = t-statistic for difference between mean scores at reference and stressed sites, var = variance in index scores explained by 

human-activity gradients at all sites. Spearman’s correlation Rho values for key stressor gradients; for a complete list of Spearman’s correlations, see Table S2. 
     

Accuracy Precision Responsiveness Spearman’s (Rho) 
    

Mean score F Var Among sites (SD) Within sites (SD) t Var TN TP SpCond 

Index Level Assem Type Cal Val Cal Val Cal Val Cal Val Cal Val Cal Val Cal Val 
   

O/E+MMI both diatoms both 1* 0.99 0.34 1.75 0.13 0.13 0.14 0.15 0.07 0.07 18.68 10.04 0.50 0.53 -0.44 -0.37 -0.48 

O/E+MMI both hybrid both 1* 0.97 2.60 1.42 0.05 0.10 0.17 0.18 0.09 0.11 17.70 8.22 0.35 0.38 -0.40 -0.36 -0.40 

O/E+MMI both sba both 1* 0.99 1.74 1.37 0.07 0.18 0.24 0.28 0.13 0.10 20.56 9.86 0.39 0.40 -0.40 -0.43 -0.32 

O/E genus diatoms null 1* 0.99 4.96 1.93 0.15 0.17 0.20 0.23 0.08 0.08 7.21 3.14 0.31 0.33 -0.26 -0.16 -0.24 

O/E genus diatoms pred 1.01 1.00 0.49 0.75 -0.13 0.01 0.18 0.19 0.11 0.07 9.5 4.9 0.30 0.36 -0.31 -0.18 -0.31 

O/E genus hybrid null 1* 0.94 6.17 1.37 0.02 0.10 0.27 0.30 0.15 0.17 2.95 -0.52 0.10 0.12 -0.18 -0.14 -0.16 

O/E genus hybrid pred 1.01 0.98 0.48 1.04 -0.18 -0.01 0.25 0.24 0.16 0.14 8.0 3.4 0.20 0.23 -0.29 -0.20 -0.27 

O/E genus sba null 1* 0.96 1.77 1.59 0.14 0.16 0.44 0.48 0.21 0.17 14.00 6.58 0.33 0.35 -0.28 -0.36 -0.20 

O/E genus sba pred 1.01 0.96 0.66 1.84 -0.11 0.03 0.38 0.42 0.29 0.17 15.7 7.0 0.27 0.30 -0.32 -0.36 -0.23 

MMI species diatoms null 1* 0.99 3.31 1.86 0.16 -0.04 0.17 0.15 0.09 0.09 22.30 13.78 0.52 0.52 -0.49 -0.49 -0.59 

MMI genus diatoms null 1* 1.01 15.78 5.89 0.14 0.16 0.29 0.30 0.16 0.15 15.47 7.87 0.46 0.45 -0.52 -0.51 -0.53 

MMI genus diatoms pred 1* 0.99 1.91 2.84 -0.17 0.15 0.17 0.22 0.13 0.12 22.65 9.75 0.32 0.32 -0.42 -0.41 -0.40 

MMI species hybrid null 1* 1.01 2.28 0.95 0.14 0.02 0.13 0.13 0.08 0.08 27.20 18.61 0.59 0.60 -0.55 -0.51 -0.55 

MMI species sba null 1* 1.02 1.34 0.96 -0.08 0.08 0.14 0.15 0.09 0.08 21.86 15.19 0.40 0.41 -0.45 -0.33 -0.41 
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Table 9. O/E, MMI, and O/E + MMI index performance statistics.  
  

Diatom O/E SBA O/E Hybrid O/E 
10th percentile of reference 0.78 0.52 0.69 
% reference calibration above 10th percentile of 
reference 

89 89 89 

% reference validation above 10th percentile of 
reference 

88 82 87 

% stressed below 10th percentile of reference 26 45 16  
Diatom MMI SBA MMI Hybrid MMI 

10th percentile of reference 0.78 0.82 0.83 
% reference calibration above 10th percentile of 
reference 

93 89 91 

% reference validation above 10th percentile of 
reference 

94 93 92 

% stressed below 10th percentile of reference 62 58 73  
Diatom ASCI SBA ASCI Hybrid ASCI 

10th percentile of reference 0.83 0.73 0.80 
% reference calibration above 10th percentile of 
reference 

89 89 89 

% reference validation above 10th percentile of 
reference 

89 85 90 

% stressed below 10th percentile of reference 53 63 45  
Diatom MMI 

genus 
SBA MMI 

genus 
Hybrid MMI 

genus 
10th percentile of reference 0.79 0.83 0.92 
% reference calibration above 10th percentile of 
reference 

90 90 89 

% reference validation above 10th percentile of 
reference 

88 78 71 

% stressed below 10th percentile of reference 63 49 76 
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Table 10. Percentage of sites in different condition classes by region and site status based on hybrid MMI scores. 
Percentiles refer to the distribution of scores at reference calibration (Cal) sites. For reference, intermediate, and 
stressed sites, numbers in the last 6 columns are percentage of sites.  
 
 

  Sites 

Likely to be 
intact (i.e., 

≥30th 
percentile 

of reference 
sites, 0.93) 

Possibly 
altered (i.e., 
30th– 10th 
percentile 

of reference 
sites, 0.83) 

Likely to be 
altered (i.e., 

1st–10th 
percentile of 

reference 
sites, 0.69) 

Very likely to 
be altered 
(i.e., <1st 

percentile of 
reference 

sites) 
Statewide Reference 737 74 18 7 1  

Intermediate 856 54 23 16 7  
Stressed 841 16 13 33 38  
Total 

 
47 18 19 16 

North Coast Reference 100 78 13 9 0  
Intermediate 105 73 22 5 0  
Stressed 46 74 9 13 4  
Total 

 
75 16 8 1 

Desert/Modoc Reference 49 67 22 8 2  
Intermediate 58 60 26 10 3  
Stressed 8 50 13 25 13  
Total 

 
63 23 10 3 

Chaparral Reference 169 68 22 8 2  
Intermediate 192 51 27 18 4  
Stressed 214 18 17 37 27  
Total 

 
44 22 22 12 

Central Valley Reference 2 50 50 0 0  
Intermediate 14 50 29 21 0  
Stressed 80 30 26 30 14  
Total 

 
33 27 28 11 

South Coast Reference 216 70 20 8 1  
Intermediate 366 39 25 23 13  
Stressed 481 5 9 34 52  
Total 

 
30 17 25 29 

Sierra Nevada Reference 199 82 15 3 0  
Intermediate 121 85 11 4 0  
Stressed 12 100 0 0 0  
Total 

 
84 13 3 0 
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Figure 1. Index scores by reference, intermediate, and high activity (“stressed”) sites for the 
O/E, MMI, and combined O/E+MMI indices. 
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Figure 2. Algal index scores at reference calibration sites across PSA regions. CV= Central Valley, 
SC= South Coast, CH=Chaparral, DM=Desert/Modoc, NC=North Coast, SN=Sierra Nevada.  
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Figure 3. Diatom, SBA, and hybrid MMI scores across environmental gradients for reference 
calibration sites. R2 values for linear regression of relationship as shown (p<0.001).  
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Figure 4. MMI scores across stressor gradients (log transformed) of percent urban development 
at the watershed scale, riparian activity (W1 Hall), percent sands and fines, total nitrogen, and 
total phosphorus. R2 values for linear regression of relationship as shown (p<0.001).  
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Figure 5. Effect of expected number of taxa (E) on accuracy, precision, and sensitivity of the O/E 
index performance for both the predictive and null O/E models. Accuracy = proportion of 
reference calibration sites in reference condition (i.e., score >10th percentile of reference 
calibration sites) for each index. Precision = standard deviation of reference calibration sites for 
each index. Sensitivity = proportion of high-activity sites not in reference condition.  
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Figure 6. Hybrid MMI results across California. Inset: detail view of hybrid MMI scores for the 
Bay Area (top) and Los Angeles (bottom).  
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Figure 7. GAM model results of algal index scores and CSCI scores versus stressor gradients.  
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Table S1. Ecoregion O/E model performance metrics. Standard deviation (SD) of the predictive model and the null 
model (SD null) for each O/E index for the reference calibration dataset.  
 

Assemblage EcoRegion SD SD null 
Diatoms Sierra Nevada 0.18 0.25 
Soft-bodied algae Sierra Nevada 0.32 0.33 
Hybrid Sierra Nevada 0.27 0.28 
Diatoms South Coast 0.18 0.21 
Soft-bodied algae South Coast 0.34 0.40 
Hybrid South Coast 0.21 0.23 
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Table S2. Spearman’s correlation Rho values for final index scores versus stressor gradients (top) and reference 
calibration scores versus stressor gradients (bottom). Abbreviations as in Table 1 and Table 2. Values < -0.4 and > 
0.4 highlighted red for emphasis.  
 

 Diatom Hybrid SBA 
Stressor gradients O/E + MMI MMI O/E O/E + MMI MMI O/E O/E + MMI MMI O/E 
Chloride (mg/L) -0.52 -0.61 -0.28 -0.47 -0.59 -0.27 -0.37 -0.42 -0.24 
DOC (mg/L) -0.39 -0.43 -0.22 -0.34 -0.41 -0.20 -0.32 -0.31 -0.25 
TN (mg/L) -0.46 -0.49 -0.31 -0.47 -0.55 -0.29 -0.44 -0.45 -0.32 
% sands and fines -0.17 -0.23 -0.06 -0.21 -0.25 -0.13 -0.33 -0.18 -0.33 
pH -0.04 -0.02 -0.05 -0.01 -0.03 0.00 -0.01 -0.10 0.04 
Total Phosporus (mg/L) -0.39 -0.49 -0.18 -0.39 -0.51 -0.20 -0.42 -0.33 -0.36 
Road Density (5K) -0.46 -0.55 -0.23 -0.43 -0.57 -0.20 -0.41 -0.43 -0.28 
Specific Cond (uS/cm) -0.52 -0.59 -0.31 -0.46 -0.55 -0.27 -0.35 -0.41 -0.23 
TEMP_00_09 -0.43 -0.44 -0.28 -0.41 -0.45 -0.28 -0.36 -0.40 -0.24 
URBAN_2011_5K -0.53 -0.58 -0.32 -0.50 -0.62 -0.28 -0.47 -0.50 -0.32 
W1_HALL_SWAMP -0.38 -0.44 -0.20 -0.38 -0.48 -0.20 -0.35 -0.40 -0.23 

 Diatom Hybrid SBA 
Environmental gradients O/E + MMI MMI O/E O/E + MMI MMI O/E O/E + MMI MMI O/E 
Day of Year 0.08 0.16 -0.04 0.10 0.11 0.07 -0.04 -0.02 -0.05 
Month 0.07 0.14 -0.03 0.09 0.09 0.07 -0.05 -0.01 -0.07 
AREA (km2) 0.18 0.22 0.07 0.10 0.17 0.03 0.02 0.00 0.03 
AtmCa 0.00 0.02 0.00 -0.03 0.01 -0.05 -0.04 -0.04 -0.04 
AtmMg -0.17 -0.10 -0.18 -0.05 -0.08 -0.01 -0.10 -0.13 -0.06 
BDH_AVE -0.02 -0.04 0.02 -0.04 -0.03 -0.04 -0.01 -0.03 0.01 
CaO_Mean 0.04 -0.01 0.05 0.05 0.04 0.03 -0.10 -0.01 -0.11 
CondQR50 -0.10 -0.14 -0.06 -0.05 -0.06 -0.04 -0.06 -0.09 -0.03 
ELEV_RANGE 0.15 0.19 0.05 -0.01 0.06 -0.05 -0.07 -0.01 -0.08 
KFCT_AVE -0.03 -0.08 0.02 0.05 0.01 0.05 0.00 -0.01 0.02 
LogWSA 0.18 0.22 0.07 0.10 0.17 0.03 0.02 0.00 0.03 
LPREM_mean 0.04 0.00 0.05 0.08 0.02 0.10 -0.08 0.00 -0.09 
LST32AVE 0.17 0.21 0.08 0.09 0.13 0.05 0.04 0.11 0.00 
MAX_ELEV 0.19 0.27 0.05 0.04 0.13 -0.01 -0.03 0.03 -0.05 
MAXWD_WS 0.05 0.06 0.01 0.04 -0.01 0.06 0.01 0.02 -0.01 
MEANP_WS 0.02 0.08 -0.03 -0.02 -0.01 -0.01 0.04 0.05 0.02 
MgO_Mean 0.06 -0.02 0.09 0.09 0.03 0.10 -0.05 -0.01 -0.06 
MINP_WS 0.10 0.13 0.06 0.05 0.05 0.05 0.04 0.07 0.00 
Latitude 0.04 0.03 0.02 0.06 0.00 0.07 0.05 0.05 0.03 
Longitude 0.02 0.04 0.00 -0.02 0.04 -0.05 -0.03 -0.02 -0.02 
PCT_CENOZ -0.03 0.02 -0.10 -0.04 0.01 -0.06 -0.02 -0.06 -0.01 
PCT_NOSED -0.01 0.02 -0.01 -0.07 0.01 -0.09 0.03 0.02 0.03 
PCT_QUART -0.08 -0.06 -0.05 -0.06 -0.06 -0.03 -0.06 0.00 -0.07 
PCT_SEDIM 0.00 0.00 -0.03 0.01 0.01 0.00 -0.03 -0.02 -0.03 
PCT_VOLCNC 0.05 0.03 0.07 0.09 0.01 0.11 0.03 0.03 0.02 
PPT_00_09 -0.01 0.04 -0.04 -0.03 -0.03 -0.02 0.04 -0.01 0.03 
PRMH_AVE 0.05 0.07 0.04 -0.02 0.00 -0.03 0.03 0.01 0.02 
PSA6cnum 0.06 0.17 -0.04 0.02 0.13 -0.03 0.05 0.07 0.03 
S_Mean -0.06 -0.03 -0.08 -0.06 -0.01 -0.08 -0.04 -0.06 -0.02 
SITE_ELEV 0.13 0.19 0.04 0.07 0.13 0.02 0.02 0.08 -0.01 
TEMP_00_09 -0.09 -0.14 -0.03 -0.06 -0.09 -0.03 -0.01 -0.08 0.03 
TMAX_WS -0.11 -0.14 -0.07 -0.04 -0.05 -0.03 0.01 -0.05 0.05 
UCS_Mean -0.03 -0.03 0.01 -0.07 -0.05 -0.06 -0.01 -0.04 0.00 
XWD_WS 0.06 0.07 0.03 0.05 -0.01 0.07 0.03 0.05 0.00 
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Table S3. Metric screening results for both species- and genus-level metrics for inclusion in the MMI. Assem = assemblage. RF (rsq) = RandomForest pseudo-R-
squared. PSA ANOVA = PSA ecoregion ANOVA test for regional bias. T-test = t test (t statistic and p value) comparing average reference calibration and high 
activity (stressed) site scores. S:N = signal to noise test. SD = standard deviation of reference calibration site scores. For complete table, click HERE. 
 
  

Assem. Level 
RF 

(rsq) 
PSA 

ANOVA (p) 
PSA 

ANOVA (F) 
T-test 

(t) 
T-test 

(p) 
Freq 
Zero 

Freq 
One 

S:N 
(p) 

S:N 
(F) 

Range 
(ref) 

Range 
(stress) SD  

Achnanthes.richness_raw diatom spp NA 0.51 0.83 3.01 0.00 1.90 0.00 0.00 1.90 1.02 1.02 0.14 
Amphora.richness_raw diatom spp NA 0.00 7.36 8.68 0.00 1.63 0.00 0.78 0.91 1.01 1.01 0.15 
cnt.ind.least.tol_raw diatom spp NA 0.02 3.02 8.75 0.00 0.00 0.00 0.00 2.25 1.65 0.08 0.80 
cnt.spp.BCG12_raw diatom spp NA 0.00 17.47 22.07 0.00 2.71 0.00 0.00 3.07 1.00 0.20 0.52 
cnt.spp.BCG2_raw diatom spp NA 0.00 17.80 22.05 0.00 2.71 0.00 0.00 3.14 1.00 0.20 0.52 
cnt.spp.BCG3_raw diatom spp NA 0.00 5.50 10.43 0.00 1.36 0.00 0.00 3.09 0.95 0.60 0.51 
cnt.spp.BCG4_raw diatom spp NA 0.00 25.28 15.46 0.00 0.54 0.00 0.00 3.45 1.03 0.68 0.31 
cnt.spp.Halo_raw diatom spp NA 0.00 21.58 17.50 0.00 0.00 0.00 0.00 3.28 1.00 0.67 0.30 
cnt.spp.HighMotility_raw diatom spp NA 0.00 9.38 5.57 0.00 0.00 0.00 0.00 2.39 1.37 1.15 0.57 
cnt.spp.IndicatorClass_TN_high_raw diatom spp NA 0.00 13.53 11.05 0.00 0.27 0.00 0.00 3.18 1.08 0.77 0.40 
cnt.spp.IndicatorClass_TN_low_raw diatom spp NA 0.00 12.09 18.31 0.00 0.27 0.00 0.00 4.11 0.94 0.40 0.46 
cnt.spp.IndicatorClass_TP_high_raw diatom spp NA 0.00 16.78 12.16 0.00 0.54 0.00 0.00 3.23 1.05 0.72 0.39 
cnt.spp.IndicatorClass_TP_low_raw diatom spp NA 0.00 6.95 17.09 0.00 0.27 0.00 0.00 3.69 1.05 0.44 0.47 
cnt.spp.least.tol_raw diatom spp NA 0.02 3.02 8.75 0.00 0.00 0.00 0.00 2.25 1.65 0.08 0.80 
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Table S4. All O/E, MMI, and combined O/E+MMI index scores for all sites. For complete table, click HERE.  
  

SampleDate SiteSetSample2 O.diatom E.diatom OoverE.diatom OoverE.null.diatom MMI.diatom OE+MMI.diatom 
000CAT148_8.10.10_1 8/10/10 Reference 7 8.01 0.87 0.92 1.27 1.07 
000CAT228_8.10.10_1 8/10/10 Reference 8 8.79 0.91 0.92 1.16 1.04 
102PS0139_8.9.10_1 8/9/10 Intermediate 8 8.18 0.98 0.92 0.92 0.95 
102PS0177_8.28.12_1 8/28/12 Reference 7 8.00 0.87 0.92 1.33 1.10 
102PS0177_8.28.12_2 8/28/12 Reference 7 8.08 0.87 0.81 1.33 1.10 
103CDCHHR_9.14.10_1 9/14/10 Reference 8 7.55 1.06 0.92 0.84 0.95 
103CDCHHR_9.14.10_2 9/14/10 Reference 7 7.62 0.92 1.04 0.91 0.92 
103FC1106_7.15.14_1 7/15/14 NA 8 8.10 0.99 0.81 1.10 1.04 
103FCA168_7.24.13_1 7/24/13 Intermediate 9 7.96 1.13 0.92 0.97 1.05 
103KLCMSR_9.14.10_1 9/14/10 Reference 9 8.97 1.00 1.04 0.89 0.94 
103PS0217_9.10.13_1 9/10/13 Intermediate 10 7.78 1.29 1.15 0.80 1.04 
103RDCBCC_7.21.11_1 7/21/11 Intermediate 8 8.06 0.99 0.81 0.80 0.89 
103STCNSR_8.9.11_1 8/9/11 Reference 4 8.64 0.46 0.46 0.85 0.66 
103WER026_8.15.12_1 8/15/12 Reference 6 7.81 0.77 0.92 1.00 0.88 
103WER026_8.15.12_2 8/15/12 Reference 7 6.92 1.01 0.92 0.99 1.00 
103WER029_7.16.14_1 7/16/14 Reference NA NA NA NA NA NA 
103WER030_8.10.11_1 8/10/11 Reference 5 7.93 0.63 0.69 0.89 0.76 
105BVCAGC_9.21.10_1 9/21/10 Reference 6 7.97 0.75 0.58 0.82 0.79 
105CE0329_7.23.14_1 7/23/14 Reference NA NA NA NA NA NA 
105CLCATC_8.10.10_1 8/10/10 Reference 8 7.77 1.03 1.04 0.94 0.99 
105CR0901_7.23.14_1 7/23/14 NA 9 9.75 0.92 1.04 1.25 1.09 
105CR0901_8.11.14_1 8/11/14 NA 13 9.75 1.33 1.27 1.00 1.17 
105CR0906_8.12.14_1 8/12/14 NA 12 9.75 1.23 1.27 1.27 1.25 
105CR0908_7.22.14_1 7/22/14 NA 11 9.52 1.16 1.15 0.99 1.07 
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Figure S1. Development dataset distribution of sites deemed representative of Reference, Intermediate, or high 
activity (Stressed) conditions after reference screening.  
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Figure S2. O/E model reference calibration site cluster groupings for each algal assemblage. 
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Figure S3. Index performance at Reference and Stressed sites across PSA regions. CV= Central Valley, SC= South 
Coast, CH=Chaparral, DM=Desert/Modoc, NC=North Coast, SN=Sierra Nevada. 
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Figure S4. California Stream Condition Index (CSCI) and Southern California Index of Biotic Integrity (IBI) scores 
versus algal index scores (this paper). The CSCI index has O/E, MMI and a combined CSCI index. The IBI has a 
diatom-only (D18), soft-bodied algae only (S2), and hybrid (H20) MMI indices. The dashed line indicates a 1:1 ratio; 
the blue line represents a linear model best fit relationship with 95% confidence interval as shown. R2 values for 
the linear model as shown.  
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Figure S5. Comparison between stressor and environmental gradients and the difference 
between CSCI and hybrid MMI scores. the blue line represents a linear model best fit 
relationship with 95% confidence interval as shown.   
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Figure S6. Comparison of algae and benthic macroinvertebrate (BMI) Bray-Curtis distances for 
200 reference calibration sites. Graphs show distribution of Bray-Curtis distances for 
comparison of all site x site comparisons.  
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Figure S7. Distribution of CSCI and algal hybrid MMI scores agreement across PSA regions. Sites 
were evaluated based on score exceeding the 10th percentile of reference site scores, 0.79 for 
the CSCI and 0.83 for the algal hybrid MMI. CV= Central Valley, SC= South Coast, CH=Chaparral, 
DM=Desert/Modoc, NC=North Coast, SN=Sierra Nevada. 
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